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Uncertainty arises in fields such as computer science, physics, finance and
engineering just to name a few such areas. Fuzzy sets, Fuzzy arithmetic, and
Fuzzy operations are useful tools for dealing with uncertainty. This article
presents the application of a system of a hybrid set of fuzzy numbers known
as Linear Fuzzy Integers to the solution of Fuzzy Linear Congruence. The
Linear Fuzzy Integers are presented after an illustration of the parent set,
Linear Fuzzy Reals. Fuzzy Linear Congruences and the validity of its solution
in the Linear Fuzzy Integer environment is shown by both illustration and
verified by proof.
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1. Introduction

Modular arithmetic is used in many applications.
Linear congruence, a specific modulo equation, is
often used in cryptography. Because of this, finding
solutions to crisp linear congruence has been studied
extensively. However, uncertainty arises because of
human error, computer error or simply because of
the unknown. According to Schjaer-Johnson (2002),
when only uncertain information is available
decision-making calls for more complex methods of
representation and  calculation. Thus in
cryptography where uncertain information occurs,
fuzzy numbers is a useful tool. In some cases, our use
of fuzzy numbers may simply provide for greater
efficiency. For instance, Golic (2005) states that
linear recurring truncated integer sequences are
predictable. This is natural since integers are a fully
ordered set. Although predictability is welcomed in
some areas of mathematics, it is an unwelcomed
phenomenon in certain situations of cryptanalysis. In
this paper we will present Linear Fuzzy Integers, a
set of numbers with both properties of real numbers
and of interval numbers. We will then find the
solution(s) to a linear congruence using the hybrid
numbers as an environment. The hybrid set of
numbers are denoted as Linear Fuzzy Real numbers
(LFR). Then we will briefly present the set of Linear
Fuzzy Integers (LFZ). This set is a subset of LFR.
Because of the hybrid nature of LFZ, fuzzy linear
congruence can be solved in a similar way as its crisp
counterpart.

Fuzzy sets were initially introduced by Bellman
and Zadeh (1970). Neggers and Kim (2001)
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researched fuzzy posets. Neggers and Kim (2007)
also created Linear Fuzzy Real numbers. Linear
Fuzzy Real numbers were used by Monk (2001) and
Prevo (2002) in the study of fuzzy random variables.
Linear Fuzzy Real numbers were also used by Rogers
(2008) to optimize the primal problems of linear
programs with fuzzy constraints Rogers.

The set of LFR is a set that shows intermediate
properties which are unique to the set and not to
those of either the real numbers or the “general”
fuzzy numbers. Because of the unique properties of
LFR and thus LFZ, we can solve fuzzy linear
congruences using known methods. This paper is
outlined as follows. Operations on LFR are
considered in Section 2. In Section 3, an introduction
of the LFZ, a method of solution to fuzzy linear
congruence and examples are considered. In Section
4, applications to cryptography and future research
are considered.

2. Linear fuzzy real numbers

Considering the real numbers R, one way to
associate a fuzzy number with a fuzzy subset of real
numbers is as a functionu : R = [0,1], where the
value p(x) is to represent a degree of belonging to
the subset of R. The Linear Fuzzy Real numbers as
described by Neggers and Kim (2001) is a triple of
real numbers (a,b,c) where a < b < c of real numbers,
See Fig. 1, such that:

ux)=1ifx=b;

ux)=0ifx<aorxzc;

ux)=(x-a)/(b-a)ifa<x<b;

ux)=(c-x)/(c-b)ifb<x<c.
For a real number ¢, we let e(¢) = u with associated
triple (¢, ¢, ¢). Then p is a linear fuzzy real number
with u(c) = 1 and p(x) = 0 otherwise. As a linear
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fuzzy real number we consider €(c) = | to represent
the real number c itself. Thus by this interpretation
we note that the set R of all real numbers is a subset
of the set containing the linear fuzzy real numbers.
The set of the linear fuzzy real numbers is a hybrid
set showing intermediate properties, which are
unique to the set and not those of either the real
numbers or the “general” fuzzy numbers.

u(x)
A
1+
> X
0 a b c

Fig. 1: Linear Fuzzy Real number u (a, b, ¢)

Let LFR = {u: R - [0,1]| u is a linear fuzzy real
number}. Each p has a set of descriptive parameters.
The base is defined as the triple (a, b, c) that occurs
in the definition of a linear fuzzy real number. Thus
one may write an element of LFRas u=pu (a, b, ).

3. Addition and subtraction

Given the linear fuzzy real numbers p1 = u (ai, by,
c1) and pz = u (ay, by, c2),

1+ yzis defined by

p1+ pz=p(ar+ az b1+ by, c1+ c2).

This operation is not the usual definition of
addition of functions. It is also clear that u + €(0)=pn
for all u € LFR. For subtraction, we have

p1— pz=p (a1 - cz, b1- by, c1- az).

4. Law of trichotomy

A linear fuzzy real number u (a, b, c) is defined to
be positive if a > 0, negative if ¢ < 0, and zeroic if a <
0 and ¢ 2 0. The following properties also hold:

1. If uis positive, then —u is negative;

If u is negative, then —u is positive;

If u is zeroic, then —u is also zeroic;

If u1 and py are positive, then so is p1 + pi2;
If u1 and p, are negative, then so is p1 + py;
If 1 and u; are zeroic, then so is py + uy;
For any u, p — p is zeroic.

Nk wh
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. Multiplication and division

Given the linear fuzzy real numbers p1 = p (ai, by,
c1) and pz = u (ay, by, c2),

U1 Uz is defined by:

w1 pz = p (min{aiaz, aicy axci, cicz}, bib,, max
{(11612, aicy, azcy, ClCz}).

Given the linear fuzzy real numbers u1 = u (ai, by,
c1) and pz = pu (az, by, c2), % is defined by:

o1
2%} 1..Uz'
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where
1

K2
(min {i L i} median {i L l} max
.u aZ,DZ,CZ ) .az'bz'Cz )

1 1 1
ottt
6. Functions on LFR

Given a function f:R - R and u (a, b, c) € LFR, f
(1): LFR — LFRis defined as:

f W) =u(a, b c),

where a* = min{f(a), f{b), f(c)}, b* =median{f{a),
fib), f(e)}, ¢* = max {f{a),

fib), flc)}.-lf a=b or b = c, then a*= b*or b* = c~.
Therefore if a = b = ¢ then it follows that a* = b* = ¢*,
ie, f*(e(b)) = e(f(b)). Hence f is an extension of
the function f.

7. Ordering properties

Given pi, uz2 € LFR, p1 < p; provided that a; < ap, by
< by c1< ¢ Ife(0) < p(a,b,c)),then0<a<b<cg
hence pu is a non-negative linear fuzzy real number.
Therefore if u is non-negative and zeroic, then a = 0
precisely. If {u;} i € I is a collection of linear fuzzy real
numbers which is bounded above by a linear fuzzy
real number y where pi=u (a, b, c)<u=p(a b, c), it
follows that {a;} i € I, {bi} i € I, and {c;} i € I are
collections of real numbers bounded above by a, b,
and ¢, respectively. By the completeness of R there
exist real numbers sup (a;), sup (b;), and sup (ci).
Suppose that sup (a;) > sup (b;), then if 26 = sup (a;)
-sup (b)) > 0, there is an ag; such that a; > sup(a;) —
€ > sup(b;) = b;, which leads to a contradiction.
Therefore, sup (a;)) < sup (b;) and by a similar
argument, sup (b;) < sup (¢;). It follows that sup (a;) <
sup (b;) < sup (ci) and thus u (sup (ai), sup (b:), sup
(c))) is a linear fuzzy real number. Now suppose that
u < p (sup (a), sup (b)) and sup (c;)). Then = pu (a, b,
c) with a < sup (a;), b < sup (b)), and ¢ < sup (c)
where at least one of these is a strict inequality.
Given without loss of generality that a < sup (ai),
there is an index k such that ax> a so that it is not the
case that p < p and thus p is not an upper bound for
the collection {w;} i €. If p is such an upper bound,
then a 2 a;implies a = sup (a;), b 2 sup (b;), and c 2
sup (c;), so that p (sup (a;), sup (b)), sup (ci)) is the
least upper bound. Therefore, (LFR, <) is a complete
ordered set. However, it is not linearly ordered. If we
let u1=u (3,4, 5) and let u2=p (a, 5, 6) and state that
a < 3, then it is not true that u; < yz nor is it true that
w12 Uz Therefore, yq1 and pz are incomparable in this
order.

8. Linear equations on LFR

Before discussing the Diophantine equation, we
must discuss linear equations in the LFR system. A
linear equation over LFR is an equation of the form

His Uxt+ U2 = U3 Ux+ Uas,

where the y;are LFR’s for i = 1,2,3,4 and uyis an
unknown LFR with a triple of unknown real numbers
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(@, B, y)- The solution set of the general linear
equation can be roughly classified as

1. Empty set,

2. singleton set,

3. not a singleton set but a bounded set:

Br<sas B<y< BpforPypB, €R,

4. an unbounded set but not all LFR’s are included,

5. all possible LFR’s are included.

A solution set that is bounded but not a singleton
would imply that pyis not equal to the solution set in
a crisp sense. Solving these equations through
traditional means can be a daunting task. If we
define a relation p; = pz (mod 6) iff uy —u» is zeroic,
then u(a,b,c) = e(b) (mod @) since u(a,b,c)—
€(b) = u(a—b,0,c — b). Therefore if we
define [y | = {uz|uz = puy(mod 0), then [u (a, b, )]
= [e(b)]. Furthermore, in order thate(a)=
€ (b)(mod ), we must have e(a)—e(b)=
€(a — b) zeroic, which can only happen if a = b.
Hence, we have a mapping ®: yu — [u] with the
property that if we compose this with the mapping
b — e€(b) then we obtain the sequenceR

j>LFR f)LFR/Z, where Z is the set of zeroic

elements of LFR, whence LFR/Z is seen to be

isomorphic to itself. If: Z — LFR is the inclusion

mapping and then we obtain a further diagram:
z5LFR S LFR/ZS LFR.

Thus [u+ p~'] = [u] * [u™] = €(1),ie, [u] has a
multiplicative inverse in LFR/Z. The properties of
LFR/Z allow one to solve for the solution of fuzzy
linear equations using the inverse order of
operations.

9. Linear congruence in an LFZ environment

It has been shown by Neggers (2007) that
arithmetic operations upon elements of LFR increase
the area of - u (a, b, c¢). This is also known as
overestimation. It is a phenomenon typical of fuzzy
operations. The overestimation effect is responsible
for a more or less large discrepancy between the
arithmetical solution of a problem and the calculated
one. In an effort to avoid this, a combination of LFZ/Z
unique properties and a re-imagining of the problem
are implemented in some cases.

10. Crisp greatest common divisor and its
applications

Because of overestimation we will define the
Crisp GCD of LFZ, CGCD, as d = €(b) such that d | ui-
u(ay b, ¢ i= 1,2,3,4,5...and if there is an element w
>dandw | ui- p(ay by ¢) i= 1,2,3,4,5... then d = w.
The CGCD will essentially be the GCD of e(b;) for a
given set of LFZ numbers. Note that for d|u (a; b, c))
where a, b, ¢, and d > 0 in LFZ, yields as expected in
integer division.

y<floor (%),%,floor (%))

Proposition 1: If d divides u, and up then d divides
Ua *ux + uy *uy for all LFZ
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Proof: If d divides u, then u, = um *d, likewise for
tp. Then it follows that

Ha "Hpx + Mo *hy = Um *d* px + pn *d* py. Thus d
divides pa *ux + po *uy for all LFZ.o

Proposition 2: Let u. and u, be LFZ (not both
zeroic) with CGCD d. Then an LFZ u. has the form p,
*ux + pp ¥y for some py, gy € LFZ iff pcis a multiple
ofd.

Proof: If pc = pa *ux + up *uy where py , py € LFZ
then since d divides u, and uy, Proposition 1 implies
that d divides pc,

Proposition 2 implies that pc = pa *ux + pp *ty has
a Linear Fuzzy Integer solution if and only if d| .

Let us observer the equation pc = pa *€(x)o + o
*€(y)o and define %“ = U, and % = ug. If we set px
= €(x)o +up t and py = €(¥)o - t Where tis any crisp
integer, then pa *px + pp *pty = pta *€(x)o + pp *€(¥)o =
Uc therefore py , py is also a solution. This gives us
infinitely many solutions for different integer's t.

11. Fuzzy Diophantine linear equations

Before discussing congruence, we must also
discuss the Fuzzy Diophantine equations. They are
equations of one or more variables, for which we
seek integer solutions. One of the simplest of these is
the Fuzzy Linear Diophantine equation pc = pa *ux +
Uv *uy. Derived from this is Bezout’s identity d = py,
*uy + Wy *uy. In fact, dividing by d, and defining
% = pgand % = ugproduces the equation (1) =
Ko *Ux + up *uy. It follows that a fuzzy solution to

€(1) = pug"ux + pg*py is

px=€(x)o + pyt and py = €(¥)o - tyt.

The Fuzzy Diophantine problem requires that the
solution ux as well as ui, yz, us and us be elements
such that y;- u (a;, b; ¢;) implies that a;, b; ¢; € Z for i
=1,2, 3 4 Thus u (a, b, c) € LFZ is an integral LFR
and behaves much like Z in R The mapping

z51Fz 5 1Fz/75 LF2,

where Z is the set of Zeroic elements and LFZ is the
set of Linear Fuzzy Integers yields the same
properties as the mapping of LFR/Z.

12. Fuzzy linear congruence

Congruence or in particular, fuzzy linear
congruence has the form p, * ux = up mod (un) where
Ux is an unknown linear fuzzy integer. As is true of
the crisp version of modulo congruence this also
implies that u, divides the quantity (ua* px- po)-

Proposition 3: If d = gcd (s, pn) then the fuzzy
linear congruence is p, * px = up mod (un) has a
solution if and only if d divides pp and if €(x)o is any
solution then the general solution is given by uy =
€(x)o + %t. Where t is an integer and the solution

form exactly d congruence classes' mod (n).

Proof: This is equivalent to the Fuzzy Linear
Diophantine Equation p, = pa *ux - pn *uy thus py =
€(x)o + Ugt and uy = €(y)o - ugt where: En — p,and

d
% = ug;note that, e(x)o + gty = €(x)o + Ugt, mod
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(4n), if pn divides y, (t; —t,). Since
arrive at the necessary statement d divides (t; — t,).
This can only occur is if (t; — t,) a multiple of d is. So
the congruence classes of solutions mod (u.) are
obtained by letting t range over a complete set of

residues mod (d).

13. Examples of the solutions of fuzzy linear
congruence with linear fuzzy integer
components

The following examples illustrate the solutions of
linear congruences in a LFZ environment.

Example 1

Solve 5*ux= pu (6, 7, 8)*Mod [u(7, 8, 9)]

Where d = 1. A reasonable €(x)y is 3.

Note:

[5*(3)-1(6,7,8)]+un(7,89)=[n(151515) +pu
(-8-7,-6)1 +u(7,89)=[u(7,8 9] +u(7,89).

Thus pyx = 3+ [u (7, 8 9)]/1 implies that ux = 3
mod [u (7, 8, 9)].

Example 2

Solve 5*uy= 6*Mod [u (17, 19, 20)]

Where again d = 1. Let’s suppose that a possible
€(x)o is not obvious. We can use tradition Number
Theory techniques to solve for an answer. Let us
change the coefficient by adding multiples of u,

6=5*uy=pu (22, 24, 25)] * ux Mod [u (17, 19, 20)]

6=p (22,24, 25) * ux Mod [u (17, 19, 20)]

1=pu (3,4 4) * ux Mod [u (17, 19, 20)], note that
the LFZ u (a, b, b) or u (b, b, c) is a right triangular
fuzzy number or LFZ.

Here 5 are a reasonable €(x)o. Thus px= 5 mod [u
(17, 19, 20)].

Traditional number theory techniques such as
the Euclidean Algorithm can also be used to solve
LFZ linear congruences.

Example 3

Solve u (12, 13, 13)*ux = -1 mod [u (13, 14, 14)].

Using the Euclidean Algorithm on the respective
€(b) values 13 and 14, we find that a reasonable
€(x)ois 1 and thus ux= 1 mod [u (13, 14, 14)].

14. Conclusion

We can find an interval solution by projecting the
upper and lower bound u (a, b, ¢) - [a,c]. We can
find a crisp solution by projecting to the middle, i (a,
b, c) — €(b). At the same time the method outlined
produces a fuzzy solution in the form of an LFZ
expression, which can be used directly as a fuzzy
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value or a fuzzy interval. In the future, LFZ may be
used in cryptography to ensure stronger security. In
cryptographic systems the messages can be
encrypted using linear congruences in mere
moments on a computer. Using linear congruences in
LFZ for encryption is possible as well. For example, if
X is the digital version of a plaintext letter and Y is
the digital version of the corresponding ciphertext
letter, then perhaps X and Y can be hidden in an LFZ
triplet and coded via px = py + 3 mod [u (25, 26, 26)].
A possibility here is a fuzzy Caesar Cipher where X
and Y are hidden as upper bounds of the LFZ.
Projecting to the middle is mathematically safer, but
the upper or lower bound calculations may provide
greater security. This of course, requires more study.
However, it is a future goal to explore the possibility
of using LFZ in the encryption processes to include
the RSA and IBE cryptosystem.
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